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Introduction 

The ,failure of the high-energy equilibrium orbit to pass 

through the centers of all the quadrupoles is due primarily 

to transverse errors in the position of the quadrupoles. 

Vertical-orbit distortion is also caused by roll of bending 

magnets about their longitudinal axis. If the radio frequency 

and bending magnet excitation do not track perfectly the hori- 

zontal closed orbit contains an additive part proportional to 

the off-momentum orbit function x P' which must be subtracted 

out to isolate that part of the magnetic field error caused 

by misalignment. From measurements of the closed orbit one 

can calculate compensatory displacements of the quadrupoles to 

reduce the distortion and thereby increase the usable aperture. 

At the injection energy of 8 GeV the remanent field errors of 

the bending magnets make a large contribution to the closed-orbit 

distortion. The low-field orbit is corrected by dc correction 

dipoles located near the quadrupole positions. This paper des- 

cribes the correction strategy we use, the relative merits of 

alternative mathematical tactics, and operational experience. 

(# Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 
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The emphasis is on the high-field case for which the practical 

difficulty in executing the corrections, i.e. in moving ring 

quadrupoles, places a premium on adequate correction from the 

fewest moves. 

Relevant Features of the NAL Main Ring 

The NAL 400-GeV synchrotron has a 96-cell separated function 

FODO lattice containing 240 quadrupole magnets. The betatron 

oscillation numbers are, horizontally, vx = 20;3 and, vertically, 

vY 
= 20.2. In the normal lattice cells, i.e. those without a 

long straight insertion, there is a sensor attached to the down- 

stream end of each quadrupole to measure the beam position in 

the plane for which the quadrupole is focusing. In the six 

cells with long straight insertions there are also two matching 

doublets of four quads each. In the centers of each doublet 

there is a combined sensor for both planes. There are thus 

108 sensors for each plane or about five per betatron wavelength. 

The sensors (Fig. 1) are split parallel plate induction 

electrodes connected by coaxial cables to the nearest of the 

twenty-four service buildings distributed around the ring. In 

bench tests these detectors have demonstrated close conformity 

with the ideal linear response 

w VA-'B x=- 
2 VAWB t (1) 

where V A and VB are the voltages detected on plates A and B, 

respectively, and w and x are shown in Fig. 1. The beam-position 

system as a whole, however, does not realize the full detector 
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performance primarily because of variability in the cable losses 

from detector to service building. Because the displacement is 

measured by a voltage ratio the absolute losses are not important, 

but with attenuation on the longer runs as great as 80%, a small 

difference between the two cables from the same detector can 

introduce significant error. Because of continuing activities 

in the tunnel such differences may fluctuate in time and a scat- 

tered 1 to 2% of the detectors may be completely inoperative. 

The important measure of the system performance is thus the 

empirical llrms" uncertainty of about .05" vertically and .l" 

horizontally established by repeated cable measurements and 

closed-orbit determinations. 

Another result of ongoing activities in the tunnel is that 

the closed-orbit distortion can show significant changes in a few 

days. Besides installation of new equipment and an occasional 

quadrupole replacement we still have some differential settling 

of the tunnel to contend with. Therefore, we have not sought a 

single-step solution for closed-orbit distortion but instead a 

tolerable method to cope with frequent approximate adjustments. 

Our basic strategy has been to seek a minimum number of quadru- 

poles which will reduce the maximum orbit distortion by a factor 

of two to three. We observe as constraints that the vertical 

closed-orbit distortion be less than l/8" at the extraction septum, 

that displacements not be so large as to require realignment of 

bending magnets or other devices from their surveyed positions, and 

that available quadrupole travel not be exceeded. After each set 

of moves the remeasured orbit is used to calculate the next step 
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of correction. We have not been able to establish completely 

fixed computational tactics which implement this strategy success- 

fully for all our data. Experience has shown, however, that a 

rather limited set of analytical tools suffices and that it is 

reasonably straightforward -to select the proper combinatgon 

for a specific set of data. 

Computational Techniques 

The high-field closed-orbit distortion xi measured at the i;th 

sensor is a sum of contributions proportional to quadrupole dis- 

placements 6:: J 

X i = 1 aij6j. (2) 
j 

Because the betatron phase advance through a quadrupole is nearly 

zero, the formula derived from a 6-function kick, 

88 K. 
a.. = 

13 
J-z J cos(~i-pj-m) 2sin7rv (3) 

is accurate to better than 1%. In this formula, Bi and Bj are 

the Courant-Snyder (1) amplitude functions at the sensor and dis- 

placed quadrupole, respectively, pi and ~j are the corresponding 

betatron phases, v is the betatron oscillation number, and K. is 3 
the strength of the j;th quad. 

A. Least Squares Solution 

Because of the uncertainty in the data, xi, and the desire to 

keep the number of correcting moves much smaller than the number 

of sensors, it is natural to regard Eq. (2) as the equation of 

condition on the fitting of the closed orbit by members of the 
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family of functions generated by displacing each of the quadru- 

poles unit amount. The coefficient a.. 
13 is the value of the j;th 

member of this family at pi. Although the most direct approach 

to the stated objective of minimizing the maximum-orbit distortion 

would ,&ppear to be fitting according to a minimax criterion, numer- 

ical experiments have shown that such solutions vary markedly with 

the addition of small amounts of random error to the orbit data 

and that a single bad sensor reading can dominate the fit. We 

therefore rely-on the familiar least squares principle. Extra 

weight placed on sensors showing maximum readings can have the 

practical effect of the minimax technique along with similar 

disadvantages. However, with least squares there is a continuous 

range of weights to choose from and one can check the sensitivity 

of the solution to a change in weights. The normal equations with 

arbitrary weights are conveniently expressed in the matrix form 

ATDAA = ATDX (4) 

where X is the column vector of closed-orbit measurements, A is 

the matrix of the coefficients a.., A is the solution vector of 11 
fitted 8., 3 and D is the diagonal matrix of the weights squared. 

The basis set is far from orthogonal, but even in hundredfold 

fits there is generally no difficulty in solving the normal 

equations to useful precision. 

B. Harmonic Analysis 

The circular harmonics are an orthogonal basis with special 

usefulness in interpretation of the data. By expressing the 

closed-orbit distortion x as 
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(5) 

where 13 is the Courant Snyder 8 function and 

one can derive from the differential equation for the closed orbit 

an expression for the field error 

AB -= 
BP 

8-3/2 (7) 

Although AB is treated formally like x, a continuous variable, we 

have position values sufficient to carry the sums only through 

about fiftieth order. The spatial resolution in a plot of AB 

is therefore inadequate to reflect accurately the errors from 

individual quadrupoles. However, a single displaced quadrupole 

shows up as a AB symmetrical about the quadrupole location. Fig. 

2 shows the orbit distortion B -l/2 x, the thirtieth-order Fourier 

fit, and the corresponding 13 312 AB/Bp from Eq. 7 for a single dis- 

placed quad. One can see that, although the closed-orbit cusp 

is not well fitted, the phase change is well localized. In the 

absence of other displaced quadrupoles nearby, any of the three 

curves clearly indicates the location of the displaced magnet. 

1. Hiqh Field Orbit 

One way to use Eq. 7 is as the solution. As suggested by 

Lambertson and Laslett (2) one should ignore the highest harmonics, 

which are particularly influenced by sensor errors, and the lowest, 

which may require substantial smooth deformations of the machine 
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while producing negligible effect on the orbit distortion. 

Although these authors use the eigenvectors of ATA as:a basis, 

their analysis is quite similar to the harmonic analysis and 

reduces to it almost exactly for the case with independently- 

positioned quadrupoles when only the focusing quadrupoles in 

normal cells .are considered. When one treats both focusing 

and defocusing quads including those in the long straight 

sections the two analyses are no longer the same, but the qual- 

itative conclusions of Lambertson and Laslett still apply. Fig. 2 

demonstrates for a single displaced quad that even though the 

calculated AB is not strictly localized, the corrected orbit is 

satisfactory. This solution is not generally useful to usbin 

the high field case because nearly every quadrupole must be 

moved. However, a few quads at the locations of AB peaks will 

often give a good least squares fit using Eq. 4. 

2. Low-Field Orbit 

It is for the low-field orbit that we have made the most 

regular use of the harmonic correction technique. (3) Because 

the AB arises mostly from remanent field it changes from day to 

day according to changes in magnet excitation cycle and magnet 

changes, Also, the injection steering is not always the same. 

Therefore, to maximize coasting beam at injection the operators 

make a trial and error search in amplitude and phase for the 

twentieth and a few neighboring harmonics. This can be done 

with noclosed-orbit measurement and computer support from only 

the control computer. These harmonic settings are added to any 
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that are needed for injection steering or quadrupole displacement 

correction. 

3. Data Smoothing 

One important application of the harmonic analysis in the 

high-field case is to reduce the sensitivity of the calculation 

to sensor errors. Eq. 7 shows that only harmonics in AB near 

the twentieth produce significant orbit distortion and therefore 

significant components at high harmonics, say greater than the 

thirtieth, are due primarily to sensor error. Random error in 

the orbit measurements will contribute roughly equal amplitudes 

in all orders and the effect of these errors can be partly 

removed by replacing B -l/2 x by its sum to thirtieth order. 

Data points with very large residuals are probably in error; 

a better answer may be obtained by ignoring them entirely. 

D. Search Algorithm 

All that is needed to get the solution according to Eq. (4) 

is a way to choose a set of quads to move for the correction. 

We have found most generally useful a systematic trial and error 

search like that used at the CERN ISR. (4) The nXth step of this 

iterative cycle fits the closed orbit with every n-fold combin- 

ation of quads consisting of the n-l selected in the prior steps 

and one of those not selected. The n-tuplet which reduces the 

rms orbit distortion by the largest amount is the optimum set 

for this step. Thus, the first step, for example, finds the 

single quad which generates the closest fit to the observed 

distortion. On the second step, that quad is paired with every 
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other to find the optimum twofold fit, and so on. This algorithm 

creates a considerable amount of numerical work and is thereby 

limited for our most readily available computer (5) to about twelve- 

fold fits. The spatial resolution of the AB/Bp plot from Eq. (7) 

does not pinpoint single magnets with certainty, but typically 

this search algorithm makes selections from the middle of the 

peaks in such a plot, finding the highest peaks first. 

Test Cases and Results 

The closed-orbit distortion shown in Fig. 3 has standard 

deviation of .6" and maximum of 1"; it is a test case generated 

by the displacement of all ring quads by random amounts with 

standard deviation .Ol". A la-quad correction was calculated 

for these data and the same data with .3" standard deviation 

of random noise added in. For both the perfect and noisy data, 

the calculation was made for both the data and its 27th-order 

Fourier sum. The effect of the calculated moves in reducing the 

true orbit distortion is given in the following table. One sees 

in this example useful correction when the rms noise is compara- 

ble to the rms orbit distortion; the elimination of higher har- 

monics in the data improves the calculated correctionrslightly. 

Some real data and its 27th-order sum are shown in Fig. 4. 

Here at least one detector (indicated by +) is faulty and is 

ignored. The orbit corrected by the moves of 10 quads (positions 

marked by X) is shown in the Lower curve. This-quadrupole.set. 

was derived from 12 quads chosen by the search program by sub- 

stituting for certain moves which were too large. Nearby focusing 
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magnets were used in place of a defocusing one and the necessary 

adjustments to the rest of the moves was calculated. With the 

bad detector ignored, original data and Fourier sum give prac- 

tically identical results. The plot of B 3/2 AB/Bp is given as 

Fig. 5 with the chosen quad positions again indicated. The 

measured closed orbit after correction is shown in Fig. 6 along 

with that calculated from the magnet moves actually delivered 

by the crew. This close agreement shows that the data are suf- 

ficiently accurate to allow substantially better correction to 

be obtained in further adjustments. We can get better informa- 

tion from our detectors by adjusting the quadrupole excitation 

to lower v at the time the measurements are taken. Eq. 3 shows 

that the principal effect is to increase amplitude of the closed 

orbit distortion for given AB. 

The experience of the last year can be summarized by saying 

that in five sets of moves involving a total of 36 quadrupoles, 

we have achieved results similar to the above example. Each time 

it has been useful to consider the data in detail and experiment 

with various combinations of the techniques described above. 

Even so, however, the optimum solution usually has differed 

little from the results of the search algorithm applied to the 

raw data. The benefits derived from the alternative.calculations 

are principally the checking of the data, the estimation of the 

degree of correction attainable in a given correction step, and 

not least important the increased confidence created by a corra- 

borative calculation that the efforts in moving many quadrupole 

magnets are not being misdirected. 
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Beam sensor readings (a) 
a~,i&&~~fp B1/2 (alO) and 
the 27th order Fourier fit. 

b. 8-3'2 AB/Bp from Fourier fit. 

.5" c. Pattern of quadrupole moves. 
Largest moves are the 
bracketing defocusing quads. 

0 

-. 5" 

.4 d. Corrected closed orbit 
divided by B l/2 . 

0 

Figure 2: Closed-orbit distortion in one superperiod 
from single focusing quad displaced 1". 
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Figure 3: Closed-orbit distortion for the main ring produced 
by random displacement of quads with u = .Ol". 
Scale is *l". The curves are 27th order Fourier 
fits. Xhe dark curve is without sensor noise: the 
light curve fits the points with (J = .3" of random 
error added. 
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Figure 4: Vertical closed-orbit distortion (a) measured with 
27th-order fit and (b) corrected by ten moves 
[locations indicated by "X" in (aJI. 

(b) 
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Figure 5: @3/2 AB/Bp calculated from vertical closed-orbit 
shown in Fig. 5. Ten quadrupoles chosen to give 
the corrected orbit shown in Fig. 4 are located 
at the places marked with "X". 
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Figure 6: Vertical closed-orbit distortion. 
Original detector readings (same as Fig. 4) [zi . 
Predicted corrected. orbit--solid curve. 
Measured orbit after correction--curve with 
filled boxes. 
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TABLE 

RMS and Maximum Orbit Distortion after l2-Quad Correction 

Before Correction .59” 

Perfect Data 

27th-order Fit to Perfect Data .05“ 

Perfect Data +G = .3" Random .19" 
Error 

27th-order Fit to Data plus 
Random Error 

.17" 

Maximum 

1.04" 

. 14 " 

. 14" 

.62" 

. 45" 


